219 research outputs found

    A simple DNA gate motif for synthesizing large-scale circuits

    Get PDF
    The prospects of programming molecular systems to perform complex autonomous tasks have motivated research into the design of synthetic biochemical circuits. Of particular interest to us are cell-free nucleic acid systems that exploit non-covalent hybridization and strand displacement reactions to create cascades that implement digital and analogue circuits. To date, circuits involving at most tens of gates have been demonstrated experimentally. Here, we propose a simple DNA gate architecture that appears suitable for practical synthesis of large-scale circuits involving possibly thousands of gates

    Simplifying Chemical Reaction Network Implementations with Two-Stranded DNA Building Blocks

    Get PDF
    In molecular programming, the Chemical Reaction Network model is often used to describe real or hypothetical systems. Often, an interesting computational task can be done with a known hypothetical Chemical Reaction Network, but often such networks have no known physical implementation. One of the important breakthroughs in the field was that any Chemical Reaction Network can be physically implemented, approximately, using DNA strand displacement mechanisms. This allows us to treat the Chemical Reaction Network model as a programming language and the implementation schemes as its compiler. This also suggests that it would be useful to optimize the result of such a compilation, and in general to find effective ways to design better DNA strand displacement systems. We discuss DNA strand displacement systems in terms of "motifs", short sequences of elementary DNA strand displacement reactions. We argue that describing such motifs in terms of their inputs and outputs, then building larger systems out of the abstracted motifs, can be an efficient way of designing DNA strand displacement systems. We discuss four previously studied motifs in this abstracted way, and present a new motif based on cooperative 4-way strand exchange. We then show how Chemical Reaction Network implementations can be built out of abstracted motifs, discussing existing implementations as well as presenting two new implementations based on 4-way strand exchange, one of which uses the new cooperative motif. The new implementations both have two desirable properties not found in existing implementations, namely both use only at most 2-stranded DNA complexes for signal and fuel complexes and both are physically reversible. There are reasons to believe that those properties may make them more robust and energy-efficient, but at the expense of using more fuel complexes than existing implementation schemes

    Information-based autonomous reconfiguration in systems of interacting DNA nanostructures

    Get PDF
    The dynamic interactions between complex molecular structures underlie a wide range of sophisticated behaviors in biological systems. In building artificial molecular machines out of DNA, an outstanding challenge is to develop mechanisms that can control the kinetics of interacting DNA nanostructures and that can compose the interactions together to carry out system-level functions. Here we show a mechanism of DNA tile displacement that follows the principles of toehold binding and branch migration similar to DNA strand displacement, but occurs at a larger scale between interacting DNA origami structures. Utilizing this mechanism, we show controlled reaction kinetics over five orders of magnitude and programmed cascades of reactions in multi-structure systems. Furthermore, we demonstrate the generality of tile displacement for occurring at any location in an array in any order, illustrated as a tic-tac-toe game. Our results suggest that tile displacement is a simple-yet-powerful mechanism that opens up the possibility for complex structural components in artificial molecular machines to undergo information-based reconfiguration in response to their environments

    Probabilistic switching circuits in DNA

    Get PDF
    A natural feature of molecular systems is their inherent stochastic behavior. A fundamental challenge related to the programming of molecular information processing systems is to develop a circuit architecture that controls the stochastic states of individual molecular events. Here we present a systematic implementation of probabilistic switching circuits, using DNA strand displacement reactions. Exploiting the intrinsic stochasticity of molecular interactions, we developed a simple, unbiased DNA switch: An input signal strand binds to the switch and releases an output signal strand with probability one-half. Using this unbiased switch as a molecular building block, we designed DNA circuits that convert an input signal to an output signal with any desired probability. Further, this probability can be switched between 2^n different values by simply varying the presence or absence of n distinct DNA molecules. We demonstrated several DNA circuits that have multiple layers and feedback, including a circuit that converts an input strand to an output strand with eight different probabilities, controlled by the combination of three DNA molecules. These circuits combine the advantages of digital and analog computation: They allow a small number of distinct input molecules to control a diverse signal range of output molecules, while keeping the inputs robust to noise and the outputs at precise values. Moreover, arbitrarily complex circuit behaviors can be implemented with just a single type of molecular building block

    Triangular DNA Origami Tilings

    Get PDF
    DNA origami tilings provide methods for creating complex molecular patterns and shapes using flat DNA origami structures as building blocks. Square tiles have been developed to construct micrometer-scale arrays and to generate patterns using stochastic or deterministic strategies. Here we show triangular tiles as a complementary approach for enriching the design space of DNA tilings and for extending the shape of the self-assembled arrays from 2D to 3D. We introduce a computational approach for maximizing binding specificity in a fully symmetric tile design, with which we construct a 20-tile structure resembling a rhombic triacontahedron. We demonstrate controlled transition between 3D and 2D structures using simple methods including tile concentration, magnesium, and fold symmetry in tile edge design. Using these approaches, we construct 2D arrays with unbounded and designed sizes. The programmability of the edge design and the flexibility of the structure make the triangular DNA origami tile an ideal building block for complex self-assembly and reconfiguration in artificial molecular machines and fabricated nanodevices

    Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks

    Get PDF
    From bacteria following simple chemical gradients to the brain distinguishing complex odour information, the ability to recognize molecular patterns is essential for biological organisms. This type of information-processing function has been implemented using DNA-based neural networks, but has been limited to the recognition of a set of no more than four patterns, each composed of four distinct DNA molecules. Winner-take-all computation has been suggested as a potential strategy for enhancing the capability of DNA-based neural networks. Compared to the linear-threshold circuits and Hopfield networks used previously, winner-take-all circuits are computationally more powerful, allow simpler molecular implementation and are not constrained by the number of patterns and their complexity, so both a large number of simple patterns and a small number of complex patterns can be recognized. Here we report a systematic implementation of winner-take-all neural networks based on DNA-strand-displacement reactions. We use a previously developed seesaw DNA gate motif, extended to include a simple and robust component that facilitates the cooperative hybridization that is involved in the process of selecting a ‘winner’. We show that with this extended seesaw motif DNA-based neural networks can classify patterns into up to nine categories. Each of these patterns consists of 20 distinct DNA molecules chosen from the set of 100 that represents the 100 bits in 10 × 10 patterns, with the 20 DNA molecules selected tracing one of the handwritten digits ‘1’ to ‘9’. The network successfully classified test patterns with up to 30 of the 100 bits flipped relative to the digit patterns ‘remembered’ during training, suggesting that molecular circuits can robustly accomplish the sophisticated task of classifying highly complex and noisy information on the basis of similarity to a memory

    Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks

    Get PDF
    From bacteria following simple chemical gradients to the brain distinguishing complex odour information, the ability to recognize molecular patterns is essential for biological organisms. This type of information-processing function has been implemented using DNA-based neural networks, but has been limited to the recognition of a set of no more than four patterns, each composed of four distinct DNA molecules. Winner-take-all computation has been suggested as a potential strategy for enhancing the capability of DNA-based neural networks. Compared to the linear-threshold circuits and Hopfield networks used previously, winner-take-all circuits are computationally more powerful, allow simpler molecular implementation and are not constrained by the number of patterns and their complexity, so both a large number of simple patterns and a small number of complex patterns can be recognized. Here we report a systematic implementation of winner-take-all neural networks based on DNA-strand-displacement reactions. We use a previously developed seesaw DNA gate motif, extended to include a simple and robust component that facilitates the cooperative hybridization that is involved in the process of selecting a ‘winner’. We show that with this extended seesaw motif DNA-based neural networks can classify patterns into up to nine categories. Each of these patterns consists of 20 distinct DNA molecules chosen from the set of 100 that represents the 100 bits in 10 × 10 patterns, with the 20 DNA molecules selected tracing one of the handwritten digits ‘1’ to ‘9’. The network successfully classified test patterns with up to 30 of the 100 bits flipped relative to the digit patterns ‘remembered’ during training, suggesting that molecular circuits can robustly accomplish the sophisticated task of classifying highly complex and noisy information on the basis of similarity to a memory

    Programmable disorder in random DNA tilings

    Get PDF
    Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures

    Probabilistic switching circuits in DNA

    Get PDF
    A natural feature of molecular systems is their inherent stochastic behavior. A fundamental challenge related to the programming of molecular information processing systems is to develop a circuit architecture that controls the stochastic states of individual molecular events. Here we present a systematic implementation of probabilistic switching circuits, using DNA strand displacement reactions. Exploiting the intrinsic stochasticity of molecular interactions, we developed a simple, unbiased DNA switch: An input signal strand binds to the switch and releases an output signal strand with probability one-half. Using this unbiased switch as a molecular building block, we designed DNA circuits that convert an input signal to an output signal with any desired probability. Further, this probability can be switched between 2^n different values by simply varying the presence or absence of n distinct DNA molecules. We demonstrated several DNA circuits that have multiple layers and feedback, including a circuit that converts an input strand to an output strand with eight different probabilities, controlled by the combination of three DNA molecules. These circuits combine the advantages of digital and analog computation: They allow a small number of distinct input molecules to control a diverse signal range of output molecules, while keeping the inputs robust to noise and the outputs at precise values. Moreover, arbitrarily complex circuit behaviors can be implemented with just a single type of molecular building block
    corecore